
Jupiter Lock
Security Assessment

August 15th, 2024 — Prepared by OtterSec

Nicola Vella nick0ve@osec.io

Robert Chen r@osec.io

mailto:nick0ve@osec.io
mailto:r@osec.io

Table of Contents

Executive Summary 2

Overview 2

Key Findings 2

Scope 2

Findings 3

General Findings 4

OS-JPL-SUG-00 | Code Refactoring 5

OS-JPL-SUG-01 | Code Redundancy 6

Appendices

Vulnerability Rating Scale 7

Procedure 8

© 2024 Otter Audits LLC. All Rights Reserved. 1 / 8

01 — Executive Summary

Overview

Jupiter engaged OtterSec to assess the jup-lockjup-lock program. This assessment was conducted between

August 2nd and August 9th, 2024. For more information on our auditing methodology, refer to Appendix B.

Key Findings

We produced 2 findings throughout this audit engagement.

We made recommendations for the removal of redundant code for better maintainability and clarity

(OS-JPL-SUG-01), and suggested modifying the codebase for improved efficiency and security (OS-

JPL-SUG-00).

Scope

The source code was delivered to us in a Git repository at https://github.com/jup-ag/jup-lock. This audit

was performed against commit 4560ddc.

A brief description of the programs is as follows:A brief description of the programs is as follows:

NameName DescriptionDescription

jup-lock
Open-source program to allow users to lock tokens based on a vesting

plan.

© 2024 Otter Audits LLC. All Rights Reserved. 2 / 8

https://github.com/jup-ag/jup-lock
https://github.com/jup-ag/jup-lock/commit/4560ddc52077673f80ee9af0542a3747fcf899c9

02 — Findings

Overall, we reported 2 findings.

We split the findings into vulnerabilities and general findings. Vulnerabilities have an immediate impact

and should be remediated as soon as possible. General findings do not have an immediate impact but will

aid in mitigating future vulnerabilities.

Severity Count

CRITICALCRITICAL 0

HIGHHIGH 0

MEDIUMMEDIUM 0

LOWLOW 0

INFOINFO 2

© 2024 Otter Audits LLC. All Rights Reserved. 3 / 8

03 — General Findings

Here, we present a discussion of general findings during our audit. While these findings do not present an

immediate security impact, they represent anti-patterns and may result in security issues in the future.

IDID DescriptionDescription

OS-JPL-SUG-00
Recommendations for modifying the codebase for improved efficiency and

adherence to coding best practices.

OS-JPL-SUG-01 Removal of redundant code for better maintainability and clarity.

© 2024 Otter Audits LLC. All Rights Reserved. 4 / 8

Jupiter Lock Audit 03 — General Findings

Code Refactoring OS-JPL-SUG-00

Description

1. Utilize emit_cpiemit_cpi instead of emitemit in the handle_update_vesting_escrow_recipienthandle_update_vesting_escrow_recipient for

emitting the EventUpdateVestingEscrowRecipientEventUpdateVestingEscrowRecipient event. This ensures that events are correctly

logged in the context of Cross-Program Invocations, adhering to the expected format and behavior

of the events.

>_ src/utils/system_utils.rs rust

pub fn handle_update_vesting_escrow_recipient(
ctx: Context<UpdateVestingEscrowRecipientCtx>,
new_recipient: Pubkey,
new_recipient_email: Option<String>,

) -> Result<()> {
[...]
emit_cpi!(EventUpdateVestingEscrowRecipient {

escrow: ctx.accounts.escrow.key(),
signer,
old_recipient,
new_recipient,

});
}

2. In handle_create_vesting_escrowhandle_create_vesting_escrow , move the Associated Token Account (ATA) checks to

CreateVestingEscrowCtxCreateVestingEscrowCtx with Anchor macros, streamlining and simplifying the code by lever-

aging Anchor’s built-in macros for common validation tasks.

Remediation

Implement the above-mentioned modifications.

Patch

1. Resolved in af9f413.

2. Resolved in af9f413.

© 2024 Otter Audits LLC. All Rights Reserved. 5 / 8

https://github.com/jup-ag/jup-lock/pull/10/commits/af9f413268596862ef64849f930f058bc85794a2#diff-5232a49a885ce71009f4ce152e38ef044d7b6e67c23c8dab77e592e03804fa0dL95
https://github.com/jup-ag/jup-lock/pull/10/commits/af9f413268596862ef64849f930f058bc85794a2#diff-c8e6394bbb1df6eb1f6256014844e8a190eca7694d9a09b37e8e34c9c2222421R49

Jupiter Lock Audit 03 — General Findings

Code Redundancy OS-JPL-SUG-01

Description

In the handle_update_vesting_escrow_recipienthandle_update_vesting_escrow_recipient instruction, setting zero_initzero_init to true during

reallocrealloc is not strictly necessary because the uninitialized bytes are already zeroed out by reallocrealloc
itself.

Remediation

Remove the redundant zero initialization in the handle_update_vesting_escrow_recipienthandle_update_vesting_escrow_recipient instruc-

tion.

Patch

Resolved in af9f413.

© 2024 Otter Audits LLC. All Rights Reserved. 6 / 8

https://github.com/jup-ag/jup-lock/pull/10/commits/af9f413268596862ef64849f930f058bc85794a2#diff-5232a49a885ce71009f4ce152e38ef044d7b6e67c23c8dab77e592e03804fa0dL95

A— Vulnerability Rating Scale

We rated our findings according to the following scale. Vulnerabilities have immediate security implications.

Informational findings may be found in the General Findings.

CRITICALCRITICAL Vulnerabilities that immediately result in a loss of user funds with minimal preconditions.

Examples:

• Misconfigured authority or access control validation.

• Improperly designed economic incentives leading to loss of funds.

HIGHHIGH
Vulnerabilities that may result in a loss of user funds but are potentially difficult to exploit.

Examples:

• Loss of funds requiring specific victim interactions.

• Exploitation involving high capital requirement with respect to payout.

MEDIUMMEDIUM Vulnerabilities that may result in denial of service scenarios or degraded usability.

Examples:

• Computational limit exhaustion through malicious input.

• Forced exceptions in the normal user flow.

LOWLOW Low probability vulnerabilities, which are still exploitable but require extenuating circumstances

or undue risk.

Examples:

• Oracle manipulation with large capital requirements and multiple transactions.

INFOINFO Best practices to mitigate future security risks. These are classified as general findings.

Examples:

• Explicit assertion of critical internal invariants.

• Improved input validation.

© 2024 Otter Audits LLC. All Rights Reserved. 7 / 8

B — Procedure

As part of our standard auditing procedure, we split our analysis into two main sections: design and

implementation.

When auditing the design of a program, we aim to ensure that the overall economic architecture is sound

in the context of an on-chain program. In other words, there is no way to steal funds or deny service,

ignoring any chain-specific quirks. This usually requires a deep understanding of the program’s internal

interactions, potential game theory implications, and general on-chain execution primitives.

One example of a design vulnerability would be an on-chain oracle that could be manipulated by flash

loans or large deposits. Such a design would generally be unsound regardless of which chain the oracle

is deployed on.

On the other hand, auditing the program’s implementation requires a deep understanding of the chain’s

execution model. While this varies from chain to chain, some common implementation vulnerabilities

include reentrancy, account ownership issues, arithmetic overflows, and rounding bugs.

As a general rule of thumb, implementation vulnerabilities tend to be more “checklist” style. In contrast,

design vulnerabilities require a strong understanding of the underlying system and the various interactions:

both with the user and cross-program.

As we approach any new target, we strive to comprehensively understand the program first. In our audits,

we always approach targets with a team of auditors. This allows us to share thoughts and collaborate,

picking up on details that the others may have missed.

While sometimes the line between design and implementation can be blurry, we hope this gives some

insight into our auditing procedure and thought process.

© 2024 Otter Audits LLC. All Rights Reserved. 8 / 8

	Executive Summary
	Overview
	Key Findings
	Scope

	Findings
	General Findings
	[8.75em][l]OS-JPL-SUG-00 | Code Refactoring
	[8.75em][l]OS-JPL-SUG-01 | Code Redundancy

	Appendices
	Vulnerability Rating Scale
	Procedure

